首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1000篇
  免费   424篇
  国内免费   974篇
测绘学   19篇
大气科学   1440篇
地球物理   153篇
地质学   136篇
海洋学   457篇
天文学   6篇
综合类   42篇
自然地理   145篇
  2024年   7篇
  2023年   27篇
  2022年   59篇
  2021年   75篇
  2020年   94篇
  2019年   81篇
  2018年   75篇
  2017年   87篇
  2016年   70篇
  2015年   72篇
  2014年   97篇
  2013年   135篇
  2012年   118篇
  2011年   116篇
  2010年   97篇
  2009年   106篇
  2008年   94篇
  2007年   124篇
  2006年   117篇
  2005年   115篇
  2004年   79篇
  2003年   74篇
  2002年   64篇
  2001年   70篇
  2000年   53篇
  1999年   33篇
  1998年   44篇
  1997年   30篇
  1996年   39篇
  1995年   39篇
  1994年   32篇
  1993年   16篇
  1992年   18篇
  1991年   13篇
  1990年   1篇
  1989年   6篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1980年   2篇
  1977年   2篇
排序方式: 共有2398条查询结果,搜索用时 15 毫秒
61.
The impact of tropical intraseasonal oscillations on the precipitation of Guangdong in Junes and its physical mechanism are analyzed using 30-yr (1979 to 2008), 86-station observational daily precipitation of Guangdong and daily atmospheric data from NCEP-DOE Reanalysis. It is found that during the annually first rainy season (April to June), the modulating effect of the activity of intraseasonal oscillations propagating eastward along the equator (MJO) on the June precipitation in Guangdong is different from that in other months. The most indicative effect of MJO on positive (negative) anomalous precipitation over the whole or most of the province is phase 3 (phase 6) of strong MJO events in Junes. A Northwest Pacific subtropical high intensifies and extends westward during phase 3. Water vapor transporting along the edge of the subtropical high from Western Pacific enhances significantly the water vapor flux over Guangdong, resulting in the enhancement of the precipitation. The condition is reverse during phase 6. The mechanism for which the subtropical high intensifies and extends westward during phase 3 is related to the atmospheric response to the asymmetric heating over the eastern Indian Ocean. Analyses of two cases of sustained strong rainfall of Guangdong in June 2010 showed that both of them are closely linked with a MJO state which is both strong and in phase 3, besides the effect from a westerly trough. It is argued further that the MJO activity is indicative of strong rainfall of Guangdong in June. The results in the present work are helpful in developing strategies for forecasting severe rainfall in Guangdong and extending, combined with the outputs of dynamic forecast models, the period of forecasting validity.  相似文献   
62.
This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble (TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean (BREM) and superensemble (SUP), are compared with the ensemble mean (EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.  相似文献   
63.
登陆台风边界层风廓线特征的地基雷达观测   总被引:2,自引:0,他引:2  
为了分析登陆台风边界层风廓线特征,利用2004—2013年中国东南沿海新一代多普勒天气雷达收集的17个登陆台风资料,采用飓风速度体积分析方法,反演登陆台风的边界层风场结构特征。与探空观测对比表明,利用雷达径向风场可以准确地反演登陆台风的边界层风场结构,其风速误差小于2 m/s,风向误差小于5°。所有登陆台风合成的边界层风廓线显示,在近地层(100 m)以上,边界层风廓线存在类似急流的最大切向风,其高度均在1 km以上,显著高于大西洋观测到的飓风边界层急流高度(低于1 km)。陆地边界层内低层入流强度也明显大于过去海上观测,这主要是由陆地上摩擦增大引起。越靠近台风中心,边界层风廓线离散度越大,其中,径向风廓线比全风速以及切向风廓线离散度更大。将风廓线相对台风移动方向分为4个象限,分析边界层风廓线非对称特征显示,台风移动前侧入流层明显高于移动后侧。最大切向风位于台风移动左后侧,而台风右后侧没有显著的急流特征,与过去理想模拟的海陆差异导致的台风非对称分布特征一致。  相似文献   
64.
The tropical Hadley circulation (HC) plays an important role in influencing the climate in the tropics and extra-tropics. The realism of the climatological characteristics, spatial structure, and temporal evolution of the long-term variation of the principal mode of the annual mean HC (i.e., the equatorially asymmetric mode, EAM) was examined in model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The results showed that all the models are moderately successful in capturing the HC's climatological features, including the spatial pattern, meridional extent, and intensity, but not the spatial or temporal variation of the EAM. The possible reasons for the poor simulation of the long-term variability of the EAM were explored. None of the models can successfully capture the differences in the warming rate between the tropical Southern Hemisphere (SH) and Northern Hemisphere (NH), which is considered to be an important driver for the variation of the AM. Most of the models produce a faster warming in the NH than in the SH, which is the reverse of the observed trend. This leads to a reversed trend in the meridional gradient between the SH and NH, and contributes to the poor simulation of EAM variability. Thus, this aspect of the models should be improved to provide better simulations of the variability of the HC. This study suggests a possible reason for the poor simulation of the HC, which may be helpful for improving the skill of the CMIP5 models in the future.  相似文献   
65.
The possible changes of tropical cyclone(TC) tracks and their influence on the future basin-wide intensity of TCs over the western North Pacific(WNP) are examined based on the projected large-scale environments derived from a selection of CMIP5(Coupled Model Intercomparison Project Phase 5) models. Specific attention is paid to the performance of the CMIP5 climate models in simulating the large-scale environment for TC development over the WNP. A downscaling system including individual models for simulating the TC track and intensity is used to select the CMIP5 models and to simulate the TC activity in the future.The assessment of the future track and intensity changes of TCs is based on the projected large-scale environment in the21 st century from a selection of nine CMIP5 climate models under the Representative Concentration Pathway 4.5(RCP4.5)scenario. Due to changes in mean steering flows, the influence of TCs over the South China Sea area is projected to decrease,with an increasing number of TCs taking a northwestward track. Changes in prevailing tracks and their contribution to basin-wide intensity change show considerable inter-model variability. The influences of changes in prevailing track make a marked contribution to TC intensity change in some models, tending to counteract the effect of SST warming. This study suggests that attention should be paid to the simulated large-scale environment when assessing the future changes in regional TC activity based on climate models. In addition, the change in prevailing tracks should be considered when assessing future TC intensity change.  相似文献   
66.
High-frequency oscillations, with periods of about 2 hours, are first identified by applying wavelet analysis to observed minutely wind speeds around the eye and eyewall of tropical cyclones(TCs). Analysis of a model simulation of Typhoon Hagupit(2008) shows that the oscillations also occur in the TC intensity, vertical motion, convergence activity and air density around the eyewall. Sequences of oscillations in these variables follow a certain order.  相似文献   
67.
Based on combined Cloud Sat/CALIPSO detections, the seasonal occurrence of deep convective clouds(DCCs) over the midlatitude North Pacific(NP) and cyclonic activity in winter were compared. In winter, DCCs are more frequent over the central NP, from approximately 30°N to 45°N, than over other regions. The high frequencies are roughly equal to those occurring in this region in summer. Most of these DCCs have cloud tops above a 12 km altitude, and the highest top is approximately 15 km. These wintertime marine DCCs commonly occur during surface circulation conditions of low pressure, high temperature, strong meridional wind, and high relative humidity. Further, the maximum probability of DCCs,according to the high correlation coefficient, was found in the region 10°–20° east and 5°–10° south of the center of the cyclones. The potential relationship between DCCs and cyclones regarding their relative locations and circulation conditions was also identified by a case study. Deep clouds were generated in the warm conveyor belt by strong updrafts from baroclinic flows. The updrafts intensified when latent heat was released during the adjustment of the cyclone circulation current. This indicates that the dynamics of cyclones are the primary energy source for DCCs over the NP in winter.  相似文献   
68.
The interaction between tropical cyclone (TC) and the large-scale mean flows such as the inter-tropical convergence zone (ITCZ) is investigated using a three-dimensional primitive equation model. Once a TC develops in the vicinity of the ITCZ region where satisfies both barotropic and baroclinic instabilities, the southeastward energy dispersion from the TC may disturb the ITCZ and thus help its breakdown. Cumulus convection can be organized in the region of cyclonic circulation, and the interaction between convective heating and the perturbation circulation may enhance the development of the waves, leading to the generation of a new tropical cyclone to the east. While the TC moves to the high latitude, the ITCZ will reform. Though repeating of this process, a synoptic-scale wave train oriented in the northwest-southeast direction can be generated and self-maintained. The results suggest that the mutual interaction among the low-frequency background flow, wave train pattern and TCs provides a possible mechanism for the origin of the summer synoptic scale wave train pattern over the western North Pacific.  相似文献   
69.
采用WRF数值模式模拟并对热带气旋尺度与强度关系进行了探讨,且初步诊断分析了内核及外围尺度对热带气旋强度影响的可能机制,结果表明:(1)内核区较大时的缩放引起角速度变化是其影响热带气旋强度的机制之一;(2)内核区较小时的进一步收缩引起的眼区次级环流破坏是其影响热带气旋强度的一种机制;(3)外围尺度变化造成低层上升至高层的水汽总量变化,是其影响热带气旋强度的一种机制;另一方面,外围尺度发生变化使得低层气流向热带气旋内的辐合减少,亦是其影响热带气旋强度的机制之一。  相似文献   
70.
Oceanic Origin of A Recent La Nina-Like Trend in the Tropical Pacific   总被引:1,自引:0,他引:1  
Global ocean temperature has been rising since the late 1970s at a speed unprecedented during the past century of recordkeeping.This accelerated warming has profound impacts not only on the marine ecosystem and oceanic carbon uptake but also on the global water cycle and climate.During this rapid warming period,the tropical Pacific displays a pronounced La Nin a-like trend,characterized by an intensification of west-east SST gradient and of atmospheric zonal overturning circulation,namely the Walker circulation.This La Nin a-like trend differs from the El Nin o-like trend in warm climate projected by most climate models,and cannot be explained by responses of the global water cycle to warm climate.The results of this study indicate that the intensification of the zonal SST gradient and the Walker circulation are associated with recent strengthening of the upper-ocean meridional overturning circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号